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Abstract-An analysis is made for a conjugate heat transfer problem with thermally developing laminar 
pipe flow, involving two-dimensional wall and axial fluid conduction. The problem is solved numerically 
by a finite-difference method for a thick walled, two-regional pipe which has constant outside surface 
temperatures interfaced by a step change. An exact profile is used to discretize the differential equation in 
the fluid region, and the method exhibited a simple and fast tool to solve this highly complicated problem. 
The effects of the three defining parameters, the P&let number, thickness ratio and wall-to-fluid conductivity 
ratio, are investigated, and it is observed that the most significant of these parameters is the P&let number. 

in its effective range (Pe < 20). 

INTRODUCTION 

Conjugate heat transfer problems in laminar duct flow 
had received little consideration up to the 198Os, as 
pointed out in the monograph of Shah and London 
[I]. In recent years, however, there have been several 
attempts to solve these types of problems with differ- 
ent sets of boundary conditions. 

Mori et al. 12, 31 investigated the wall conduction 
effects between parallel plates and in circular pipes 
both for constant surface temperature and uniform 
heat flux boundary conditions. Davis and Gill [4] con- 
sidered Couette flow between parallel plates to analyse 
the effect of axial wall conduction. Sparrow and 
Faghri [5] made an analysis for vertical pipes with 
internal forced and external natural convection. The 
same boundary condition for the external surface was 
also used by Sunden [6] for horizontal multilayer 
pipes, and by Wijeysundera [7] for a pipe which has a 
finite heated section. Thick walled pipes exhibiting 
two-dimensional conduction were investigated by 
Barozzi and Pagliarini [8] and by Campo and Shuler 
[9] using numerical methods. 

In problems which are referred to as conjugate, the 
dependence of the thermal properties of the fluid on 
the properties of the wall is large in the thermal 
entrance region for a duct flow. However, when the 
P&let number of the flow is low, there is also a con- 
siderable amount of axial conduction in the fluid for 
thermally developing flows. The coupled effect of wall 
and fluid axial conduction was investigated by Faghri 
and Sparrow [lo] and Zariffeh et al. [l l] using a finite- 
difference method and by Campo and Range1 [ 12) 
analytically. All these investigators considered one- 
dimensional conduction in the wall. 

In this paper the combined effect of two-dimen- 
sional wall conduction and fluid axial conduction is 
analysed for low P&let number laminar flow heat 

transfer. A two-regional thick-walled pipe is 
considered, as shown in Fig. 1. The pipe extends infi- 
nitely both in the positive and the negative directions. 
The external temperature of the wall in the upstream 
and in the downstream portions of the pipe are 
assumed to be constant and have different values with 
a jump at the beginning of the heating section. The 
far upstream temperature of the fluid is uniform over 
the section and equal to the outside wall temperature 
of that portion. The flow is hydrodynamically 
developed and physical properties of the fluid are con- 
stant. Viscous dissipation is neglected. 

PROBLEM FORMULATION 

Under the assumed conditions, the governing equa- 
tions and the boundary conditions in non-dimensional 
form are as follows. 

In the wall region, 
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NOMENCLATURE 

2 
specific heat at constant pressure 
thermal conductivity 

L length, defined by equation (7) 
NU Nusselt number 
Pe P&let number 
4 heat flux 
r radial coordinate 
T temperature 
t thickness of the pipe wall 
lA velocity in the axial direction 
x axial coordinate. 

Greek symbols 
6r radial position difference 
6x axial position difference 
Ar radial step size 

Ax axial step size 
P density. 

Subscripts 
b bulk 
i,j at nodal point i, j 
f fluid 
m mean 
r radial 
S solid 
sf ratio of solid to fluid 
W at solid-fluid interface 
X axial. 

Superscript 
dimensionless quantity. 

at x’=-cc T’=O (2b) - 2qw Nu = ___ 
at x’=+cc T’=l (2c) T&T;. 
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The dimensionless variables are defined as 

T-T, 
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and 

Pe = 2u,rWpc, 
kr 

The fluid bulk temperatures and local Nusselt num- 
bers may be computed from 

Tb = 4 
s 

’ r’(l -r’*)T’dr’ (3) 
0 

(4) 

and 

Fig. 1. Schematic diagram of the problem and coordinate 
system. 

SOLUTION METHODOLOGY 

Solutions of the problem defined by the system of 
equations (1) and (2) are obtained numerically by 
using a finite-difference method. Equation (1) in the 
solid region is discretized by the so-called central- 
difference profiles since there are only conductive 
terms in it. Equation (2), however, is discretized in a 
different manner, since it contains both conductive 
and convective terms in the axial direction. 

For convergence in convection problems, central- 
difference profiles are safely used when the P&let num- 
ber of the flow is very small (Pe < 2) or by using very 
fine grids [13]. The upwind scheme, on the other hand, 
gives satisfactory results only for large P&let number 
flows (Pe > 50) for it assumes zero conduction. How- 
ever, the effect of fluid axial conduction is important, 
especially for flows with Pe < 50. Therefore, a better 
profile should be used to characterize the temperature 
change in the flow direction in the fluid region. Such 
a profile was developed in a similar problem and the 
details of the derivation of the pertinent difference 
equations are given in ref. [14]. An outline of the 
procedure is as follows. 

If the terms in x-direction of equation (2) is grouped 
and equated to zero, the equation for the one-dimen- 
sional version of the convection-conduction problem 
in the fluid region is obtained : 

(l-r+&L~=O. (6) 

The solution of the above equation in a domain like 
0 6 x’ < L’ and by assuming that T’(0) = Tb and 
T’(L’) = T;- gives 
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T-T; exp[Pe*(l-r/*)x’]-1 p= 
Tc-Yo exp[Pe*(l-r’*)L’]-1’ 

(7) 

If this profile is applied to adjacent grid points in the 
flow direction and combined with the central-differ- 
ence profiles in the radial direction, the following dis- 
cretization equation is obtained for a nodal point (i, j) 
in the fluid region : 

aJT, = h.,T:+,,, + c,,, Ti- 1 ,, + 4, Z,,, I + e,,, K, 1 

(84 

where 
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4, = & Wh., 

e,,, = & (Wi., 

a,,, = h., + c,,, + 4, + q,. @f) 
This method of discretization may be treated as an 

application of the general method defined as an exact 
or exponential scheme by Patankar [ 131. 

Accuracy tests were performed by increasing the 
number of grid points up to 16 times ; by increasing 
the convergence limit up to the seventh decimal figure ; 
by changing the locations of the grid points, the 
initially guessed temperature field and by reversing the 
traverse and sweep directions during the calculations. 
The maximum difference in the calculated values for 
any of these cases was not more than 2%. 

The temperature distribution was computed by the 
Gauss-Seidel iteration technique. Radially, the com- 
putational region is limited in one direction by the 
outside wall surface and by the axis in the other. 
The axial distances, on the other hand, for both the 
upstream and the downstream directions are esti- 
mated by pre-runs with coarse grids, in order to find 
the locations where the boundary conditions at 
x = - cc and x = + co are satisfied. 

RESULTS AND DISCUSSION 

The grid points are located both in the wall and in 
the fluid regions. To enhance the accuracy, the grids 
are contracted in r-direction near the solid-fluid inter- 
face in both solid and fluid regions. The contraction 
of the grids are also applied in the x-direction around 
the beginning of the heating zone (x = 0) in both 
upstream and downstream directions. Moreover the 
grid sizes in the axial direction were varied by linearly 
stretching the axial coordinate, i.e. the axial step size 
of a grid was taken as 1.5 times the step size of the 
previous grid, starting at x = 0 and increasing in both 
upstream and downstream directions. The minimum 
step size used in the axial direction is 0.0001, while it 
is t’j8 in the radial direction. Satisfactory results were 
obtained by using to a total of 12 grid spacings (four 
in the wall and eight in the fluid region) in the r- 
direction. A total number of 22-28 grid points were 
used in the x-direction, depending on the axial length 
of the computational region, which depends on the 
parameters of the problem. 

The results of the problem depend on three par- 
ameters, Pe, t’ and ksf. Calculations were then made 
for several combinations of these parameters. For the 
P&let number the values of 1,5 and 20 are usedb since 
axial fluid conduction is not negligible for flows of 
this range. Three different values are also used for 
the thickness ratio, 0.02, 0.1 and 0.3, appropriate for 
problems of engineering interest. 

Low P&let number flow and therefore axial fluid 
conduction is generally assumed to be a characteristic 
of low Prandtl number fluids such as liquid metals. 
These fluids, however, possess high thermal conduc- 
tivity, and the expected wall-to-fluid conductivity 
ratio should not have very large values. On the other 
hand, calculations using very large values of kst would 
give a chance to make a comparison, since very large 
ksf corresponds to the situation of very small or no 
wall resistance. Calculations were then made ‘for ksf 
values of 1, 10, 100 and 104. The results of the cal- 
culations, however, indicate that the computedvalues 
are invariably close for the cases of ksf = 100 and 
ksf = lo4 for any combinations of the other two vari- 
ables. To see further how solutions are changed with 
ksf, some runs were performed and it was seen that, 
when k,, exceeds 100, any change of this parameter 
has almost no effect. 

During an iteration, the information was trans- Similarly, to obtain the limiting values oft’ and Pe, 

ferred between the solid and the fluid regions via 
conditions (lg) and (2e). A consecutive procedure 
was used in the calculations. For a typical run, the 
temperature distribution in the solid region was found 
by using the temperature distribution of the previous 
run and by condition (lg) at the interface. Then, 
iteration was continued on the fluid side using the 
temperature distribution of the inner surface as a 
boundary condition (2e). Therefore, the information 
was carried from solid to fluid domain by the interface 
temperatures, and from fluid to solid by the heat 
fluxes. 

The iterations were continued until convergence up 
to the fifth decimal figures was achieved. To increase 
the rate of convergence, the points are visited by a 
traverse direction from outer wall to axis and by a 
sweep direction from upstream to downstream. A 
relaxation factor of 1.5 was used throughout the cal- 
culations. The rate of convergence was quite rapid, 
and, depending on the parameters, the solutions were 
obtained within 60 to 230 iterations. A micro-PC was 
used for the calculations. 
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Fig. 3. Effect of conductivity ratio on interfacial heat flux. 
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Fig. 2. Effect of thickness ratio on interfacial heat flux. 

beyond which the calculated values are not affected, 
runs were performed for some small values of wall 
thickness up to t’ = 10e4 and for some large values of 
the P&let number up to Pe = 500. When wall thick- 
ness is small, wall conduction effects decrease and the 
results approach the case of no wall conduction. On 
the other hand, when the P&let number increases, 
both fluid axial conduction and wall conduction 
effects are negligible, and the results get closer to 
the case of no wall and fluid axial conduction. The 
results indicate that with the boundary conditions of 
the present conjugated problem, the change in the 
computed values may be assumed negligible when 
k,, > 100, Pe > 20 and t’ < 0.02. 

The local Nusselt number, as traditionally con- 
sidered in the presentation of the convection heat 
transfer results, is not a convenient tool for the con- 
jugate problems, since it contains three unknowns in 
its definition [lo]. The local interfacial heat flux gives 
more meaningful information, and therefore the 
results are presented by and the discussions are mainly 
based on local interfacial heat flux values. However, 
some results are also given in terms of fluid bulk 
temperatures, local Nusselt numbers and inner wall 
temperatures, in order to better understand the nature 
of the conjugated problem. On the other hand, the 
only comparable results in the available literature 
are given in ref. [15] in terms of bulk temperatures 
and local Nusselt numbers. Therefore the results of 
the present work are compared by means of these 
parameters. 

Figures 24 present axial distribution of interfacial 
heat flux values. A parametric representation is given 
in these figures to analyse the effects of each defining 
parameter. 

In Fig. 2 interfacial heat flux values are given for 
Pe = 5, k,, = 10 and for three different values of t’. 
Inspection of this figure will also show the general 
trend of all qw curves as well as the effect of the thick- 

ness ratio on conjugated heat transfer. As can be seen, 
there is a substantial amount of heat transfer occur- 
ring in the upstream region due to the penetration of 
heat opposite to the direction of flow, resulting from 
axial wall and fluid conduction. In the vicinity of the 
beginning of the heating section of the pipe (x = 0), 
the upstream heat flux values are positive, i.e. from 
wall to the fluid: however, further upstream they 
become negative. In the wall region, heat penetrated 
through the upstream side is lost from the outside 
surface and fluid temperatures adjacent to the inner 
wall of the pipe, where convection vanishes, may be 
higher than the inner wall temperatures, leading to 
reverse heat transfer. The amount of reverse heat flux 
in the upstream section decreases with increasing 
upstream distance and ceases to zero. Since thick walls 
exhibit more axial conduction, both the extent and 
the magnitude of reverse heat transfer is smaller. 

In the downstream side of the pipe the curves rise 
to a maximum value and then decrease. The reason 
for such a peak may be explained by high temperature 
gradients at the beginning of the heating section. The 
thermal resistance of the pipe wall is smaller for thin 
walls and heat supplied from the outer surface is easily 
transferred to the inner surface. Therefore the peak 
heat flux values are higher for small wall thickness, 

At the beginning of the heating section. wall con- 
duction is dominant over convection and the heat 

6- 
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Fig. 4. Effect of P&let number on interfacial heat flux 
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X’ 

Fig. 5. Axial distribution of the fluid bulk temperature (t’ = 0.3) 

flux values are high. After a certain axial distance is 
reached, convection is more pronounced and heat flux 
values decrease. The above described trend is stronger 
for thin walls, and therefore the peak value of heat 
flux occurs at smaller axial distances. For this reason, 
the curves cross at some axial distance downstream of 
the pipe. The extent of the downstream heating or the 
development length is slightly increased with increas- 
ing wall thickness due to more axial wall conduction. 

In Fig. 3 the effect of wall-to-fluid thermal con- 
ductivity ratio on interfacial heat flux is shown. The 
amount of reverse heat transfer in the upstream region 
is greater with large k+ Since large k&r means small 
thermal resistance in the wall, interfacial temperatures 
and therefore heat flux values are large in the heated 
section. Both the extent of upstream heat transfer and 
the development length in the downstream region are 
almost the same for all k,r values. 

For large values of conductivity ratio, heat supplied 
from the outer wall surface is easily transferred in 
radial direction to the inner wall surface and therefore 
both the extent and the magnitude of the backward 
axial conduction decrease. This causes lower inter- 
facial temperatures in the upstream side, resulting in 

higher values of reverse heat transfer in the upstream 
side for large k,,. 

In order to investigate the effect of P&let number, 
Fig. 4 is drawn for axial distribution of interfacial heat 
flux for different P&let numbers. In the upstream side, 
the extent and the magnitude of reverse heat flux are 
increased with decreasing P&let number. This is due 
to the large amounts of axial fluid conduction and 
penetration of heat backward through the upstmam 
side for small P&let number flows. The extent of post- 
heating in the downstream section is also increased 
with decreasing P&let number, since the convective 
effect is low and therefore the development length is 
increased. The degree of peak is smaller and the drop- 
off is more gradual in heat flux values with small P&let 
numbers. 

Fluid bulk temperatures are given in Figs. 5 and 6. 
In Fig. 5 the curves are given for the same thickness 
ratio but for different Pe and ksf values. Figure 6, 
however, is drawn for the same conductivity ratio 
but with different t’ and Pe values. The two figures 
compare the effect of each parameter on bulk tem- 
peratures. As wall axial conduction increases (greater 
t’, smaller k,,), and as fluid axial conduction increases 

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Fig. 6. Axial distribution of the fluid bulk temperature (k,, = 1). 
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Fig. 7. Axial distribution of the local Nusselt number 
(Pe = 1). 
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Fig. 8. Axial distribution of the local Nusselt number 
(Pe = 5). 

(smaller Pe), the diffusion of heat into the upstream 
side increases the bulk temperatures in this region and 
decreases those in the downstream region. The curves 
get closer to the case of no wall conduction with 
decreasing t’ and increasing k,r, and to the case of no 
wall and fluid axial conduction (Pe = co) for large 
P&let numbers. 

Local Nusselt numbers for the downstream region 
are drawn in Figs. 7-9. Each of these figures are par- 
ameterized with different t’ and k,, values for the same 
P&let number. In the vicinity of the heated section, 
the local Nusselt numbers are smaller than those for 
the case of no wall conduction and the curves rise to 
a maximum and then decrease. The reason for such a 
peak is due to the similar behaviour of qw curves, 
since qw is a defining parameter of the Nusselt number 
[equation (5)]. The degree of peak is smaller and is 
shifted downstream with increasing wall thickness and 
with decreasing ksf as in qw curves. Reverse heat trans- 
fer from fluid to the wall in the upstream side and low 
heat flux values at the beginning of the heated section 

Fig. 9. 

15 

Nu 
10 

8 

6 

51 1 ---witho 6 

&I 4 

-==T ‘14 
3 JLL__L~~__l__? L-l 
lr3 2 4 6Slo-22 ,4 68,o-~ 2 4 6 

x 
Axial distribution of the local Nusselt 

(Pe = 20). 
number 

0.8 

0.6 

Xv 
0.4 

0.2 

0 
-0.04 -0.02 0 x’ 0.02 O.C!4 

Fig. 10. Axial distribution of the inner wall temperature. 

extend the heat transfer further downstream. This 
causes the interfacial heat flux and therefore the local 
Nusselt numbers to become higher than those of the 
no wall conduction case after a certain axial distance. 
This trend is more influenced in thick walled pipes 
and with lower ksf values, and therefore the Nusselt 
curves cross at some axial distance. 

Another interesting feature of the Nusselt curves is 
that, far downstream, instead of reaching an asymp- 
totic fully developed value, they attain a minimum 
and then begin to rise. Such a rise in Nusselt values 
is indicated in some conjugated problems, as is also 
reported in refs. [5, 111. The values of the minima 
change with parameters and, for some cases, may be 
less than the asymptotic value of the case of no wall 
conduction. 

Finally, inspection of Figs. 7-9 shows that the effect 
of wall conduction on local Nusselt numbers is more 
pronounced with low P&let number flows and may 
be assumed negligible for flows with Pe > 20, except 
in the immediate vicinity of x = 0. 

Inner wall temperature distributions, again for 
some representative groups of parameters, are given 
in Fig. 10. Inspection of the curves reveals that an 
increase either in wall axial conduction (large t’, small 
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k,r) or fluid axial conduction (small Pe) increases 
internal wall temperatures in the upstream side and 
decreases those in the downstream side. Since the 
dimensionless outer wall temperature is 0 in the 
upstream side and 1 in the downstream side of the 
pipe, the difference between the inner and the outer 
wall temperatures is high around x = 0. Another point 
which can be deduced from this figure is that the effect 
of k,r on internal wall temperature is increased with 
decreasing axial fluid conduction. 
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